Optim Finance
  • INTRODUCTION
    • Introduction
    • Roadmap
  • OADA
    • Overview
    • OADA 🟣 and sOADA 🟢
    • Flow of Funds
    • User Guides
      • Passive yield with sOADA
      • Epoch Stake Auction
    • AMOs
      • Splash DEX AMO
      • Stake Auction AMO
      • Staking AMO
    • UNHCR Donation Module
      • Automated Yield Donation Protocol
      • NFT Impact Certificate
      • Integration with the OADA Ecosystem
      • Humanitarian Partnership
      • Future Extensions
    • Governance
    • Resources
  • OTOKEN Framework
    • Introduction
      • Key Benefits
      • Who is it for?
      • Inspirations & Applications
    • Framework
      • Key Concepts
      • Use Cases
      • OTOKENs
    • Core Concepts
      • OTOKEN and sOTOKEN
      • Algorithmic Market Operations (AMOs)
      • Balancing Stability, Yield, and Adaptability
    • System Architecture
      • OTOKEN Policy
      • Staking AMO
      • Collateral Management AMO
    • Extensions & Other Modules
      • DEX AMO (Liquidity & Peg Stability)
      • Stake Auction AMO
      • Borrowing & Lending AMOs
      • Other AMOs & Opportunities
    • Multiple OTOKEN Deployments
      • Ecosystem Synergy
      • Not Just Synthetic Assets
    • Vision
      • Key Pillars of the OToken Framework
      • Future Directions & Opportunities
      • An Invitation to Innovate
    • Bug Bounty Program
  • LIQUIDITY BONDS
    • Overview
    • Bond App FAQ
    • Use Cases
      • ISPO Bonds
      • SPO Bonds
    • Bond Architecture
      • Validators
      • High Level Workflow
      • Scripts Technical
      • Transaction Flow
      • Pooled Loans
    • Guides for SPOs
      • Bond Creation
      • Bond Sales
      • SPO Bond Issue Summary
      • Bond Verification
    • Liquidity Bonds Audit
  • OUSD
    • OUSD Reserves
      • Reserve Criteria
        • Stability and Reputation
        • Compliance
        • Smart Contract Security
    • Ongoing Reserves Management
      • Reserve Asset Valuation Calculation
      • Dynamic Reserve Asset Adjustment Metrics
        • Dynamic Reserves Adjustment
    • Yield, Staking, and Flow of Funds
      • Yield Modules
        • OUSD DEX AMO
        • Future Modules (v2)
      • Staking AMO
      • sOUSD Redemption Mechanism
    • Peg Protection
      • Market Depth and Liquidity
    • Governance and Risk Framework
      • Risk Capital Requirements
      • First-Loss Capital Structure
      • Asset Allocation Framework
        • Static Governance Parameters
        • Dynamic Allocation System
    • Financial Engineering Audit
  • Leviathan
    • System Architecture
      • Background
      • Concurrency Limitations
      • Complexity in Transaction and Contract Management
    • Core Concepts
      • Deterministic Transaction
        • Guaranteed Transaction
      • Instant Finality
        • Liveness and Safety
        • Probabilistic Finality vs Instant Finality
      • Account Abstraction
        • Concept of Account Abstraction
        • Technical Implementation
        • Security and Operational Implications
      • Intent Based Transactions
        • The Infrastructure and Process of IBTs
        • Declarative Constraints in IBTs
      • Layer 2
        • Types of Layer 2 Solutions
      • Sequencers
        • Core Functions of Sequencers
        • Role in Layer 2 Rollups
        • Challenges
    • System Components
      • Understanding the System Components
      • Optim-Account (Intents to enable tx chain)
        • User Interaction and Intent Submission
        • Intent Structuring and Authentication
        • Smart Contract Functionalities and Operational Parameters
        • The Necessity of an Account-Based Framework
        • Account Abstraction and Its Role in Leviathan
      • Leviathan Sequencer System (tx chain building)
        • The Role of the Leviathan Sequencer System in Conjunction with The Optim Account
        • Sequencing and Ordering of Transactions
        • The Role of Time in the System
        • The Pragmatic Leviathan: Dealing with Potential Changes
      • The Role of OADA in the Leviathan System
        • Operational Simplification of Staking Mechanisms via OADA Integration
        • Facilitating Time Dilation and Composability
    • Processes
      • Entering Leviathan
      • Transaction Execution
      • Leaving Leviathan
    • High Level Overview
      • System Design
        • Account Abstraction Functionality
        • Guaranteed Transactions
        • Instant Finality
        • Unbreakable Transaction Chaining
        • Layer 2 Execution Environment
        • Future Sequencer Network
      • System Context
        • Limitations of current transactions chaining paradigm
        • Limitations of current inter dApp composability issues
        • Explanation of basic design and non-custodial asset inputs
        • Intent Based Transactions
        • Account Base vs eUTxO model app architecture
      • Theoretical Applications
  • GOVERNANCE
    • Governance Overview
      • Proposal Temp Check
      • Governance Proposal
        • On/Off Chain Mechanics
      • ODAO
    • Tokenomics
      • Categories
      • Vesting
    • Optim DAO Wallets
    • Protocol Profits
  • GUIDES
    • Transaction Chaining
      • Background
      • Overview
      • Pool Transaction Chaining
    • OPTIMiz Conversion
  • ODAO Stack
    • Introduction
    • Design Principles
    • Why Optim DAO Stack?
      • Current Limitations
      • ODAO Solutions
    • Key Features
      • Snapshot Voting
      • Treasury Management
      • Proposal Execution
    • System Architecture
      • Modular Framework
      • On-Chain Logic
      • Off-Chain Operations
      • User Interfaces
    • Core Modules
      • Snapshot Voting Module
      • Treasury Management Module
      • Proposal Execution Module
    • Future Roadmap
      • Potential Future Enhancements
      • Long Term Vision
  • OADA UI
    • Setup
      • Installation
      • Development Workflow
      • Troubleshooting
      • Development Tips
      • Open Source Contributions
      • FAQ
    • Key Functionalities
      • Wallet Integration
      • Dashboard
      • Transaction Management
        • UTxO Management
        • Transaction Creation and Conversion
        • Transaction Monitoring
      • Real-time Updates
        • Portfolio Value Tracking
        • Transaction Status Monitoring
    • OADA Smart Contract API
      • Minting OADA
      • Staking OADA
      • Unstaking sOADA
      • Epoch Stake Auction
        • Bid Calculation Functions
        • Auction Actions
        • Bid Form Component
        • Auction Dashboard
    • Tutorials
      • Environment Setup and Installation
      • Understanding the Project Structure
      • Basic Configuration and Customization
      • Working with Components
      • State Management and Data Flow
      • Wallet Integration and State Management
      • Smart Contract Integration
      • Advanced UI Customization
      • Testing and Quality Assurance
Powered by GitBook
On this page
  • Mint
  • Stake
  • Earn
  • Unstake
  • Swap
  1. OADA
  2. User Guides

Passive yield with sOADA

Mint > Stake > Earn

PreviousUser GuidesNextEpoch Stake Auction

Last updated 9 months ago

Earning yield with sOADA is very simple. It does not require active management, and users will earn greater yield than the base staking rate.


The first step to earning with sOADA is minting OADA. The minimum amount that can be deposited at a time is 100 ADA. There is a 1 ADA transaction fee added whenever you mint OADA. For this reason, it is generally better to mint one large amount rather than multiple small amounts.

After you have minted your OADA, it is time to stake it. Unlike minting, there is no minimum amount when staking. However, users should be aware of the maximum staking capacity. There is a 2 ADA fee for staking OADA, similar to minting. The percentage shown above the UI displays the APY of the previous epoch. Yield is not fixed and is likely to change over time.

Users should be aware of the max capacity on the staking vault. If the cap is full, stakers will either have to wait until later, or they can add their funds to the staking queue and they will automatically be staked once the queue opens up. Funds enter from the queue in order they were deposited. The queue does not lock your funds, so you are free to exit the queue at any time.

Earn

With your sOADA in your wallet, you are free to use it as you would any other CNT. Integrations with lending markets and other DeFi products are currently being explored. sOADA is particularly attractive for this use case because it is a yield bearing token. However, even if you do nothing with it in your wallet you will still be earning better yields than you would from staking ADA.

Yield is auto-compounding and can be tracked in the unstake tab. The difference between the figure in the box at the bottom and "Amount" box is a rough approximation of your net profit (this will only be technically accurate if the conversion ratio of OADA:sOADA at time of staking was exactly 1:1)

Eventually you will decide it is time to exit your position. The first step is unstaking your sOADA. Users are free to unstake their sOADA whenever they like, but there is a 2 ADA fee to unstake, similar to staking and minting as discussed above. The amount shown in the bottom box is the total OADA you will receive after the fee is subtracted.

With your newly unstake OADA, you will head to the Splash OADA/ADA stableswap. This pool is configured to have very deep liquidity. You can see even with a very large position the slippage is very low. Worth noting: the pools liquidity will always be deepest at the beginning of each new epoch so that will likely be the cheapest time to swap.

Confirm the transaction and you are finished.

Mint > Stake > Earn

Stake
Unstake
Swap
Mint
Yield is not fixed and will change each epoch
7947.41 - 7896.94 = 50.47 ADA profit