Optim Finance
  • INTRODUCTION
    • Introduction
    • Roadmap
  • OADA
    • Overview
    • OADA 🟣 and sOADA 🟢
    • Flow of Funds
    • User Guides
      • Passive yield with sOADA
      • Epoch Stake Auction
    • AMOs
      • Splash DEX AMO
      • Stake Auction AMO
      • Staking AMO
    • UNHCR Donation Module
      • Automated Yield Donation Protocol
      • NFT Impact Certificate
      • Integration with the OADA Ecosystem
      • Humanitarian Partnership
      • Future Extensions
    • Governance
    • Resources
  • OTOKEN Framework
    • Introduction
      • Key Benefits
      • Who is it for?
      • Inspirations & Applications
    • Framework
      • Key Concepts
      • Use Cases
      • OTOKENs
    • Core Concepts
      • OTOKEN and sOTOKEN
      • Algorithmic Market Operations (AMOs)
      • Balancing Stability, Yield, and Adaptability
    • System Architecture
      • OTOKEN Policy
      • Staking AMO
      • Collateral Management AMO
    • Extensions & Other Modules
      • DEX AMO (Liquidity & Peg Stability)
      • Stake Auction AMO
      • Borrowing & Lending AMOs
      • Other AMOs & Opportunities
    • Multiple OTOKEN Deployments
      • Ecosystem Synergy
      • Not Just Synthetic Assets
    • Vision
      • Key Pillars of the OToken Framework
      • Future Directions & Opportunities
      • An Invitation to Innovate
    • Bug Bounty Program
  • LIQUIDITY BONDS
    • Overview
    • Bond App FAQ
    • Use Cases
      • ISPO Bonds
      • SPO Bonds
    • Bond Architecture
      • Validators
      • High Level Workflow
      • Scripts Technical
      • Transaction Flow
      • Pooled Loans
    • Guides for SPOs
      • Bond Creation
      • Bond Sales
      • SPO Bond Issue Summary
      • Bond Verification
    • Liquidity Bonds Audit
  • OUSD
    • OUSD Reserves
      • Reserve Criteria
        • Stability and Reputation
        • Compliance
        • Smart Contract Security
    • Ongoing Reserves Management
      • Reserve Asset Valuation Calculation
      • Dynamic Reserve Asset Adjustment Metrics
        • Dynamic Reserves Adjustment
    • Yield, Staking, and Flow of Funds
      • Yield Modules
        • OUSD DEX AMO
        • Future Modules (v2)
      • Staking AMO
      • sOUSD Redemption Mechanism
    • Peg Protection
      • Market Depth and Liquidity
    • Governance and Risk Framework
      • Risk Capital Requirements
      • First-Loss Capital Structure
      • Asset Allocation Framework
        • Static Governance Parameters
        • Dynamic Allocation System
    • Financial Engineering Audit
  • Leviathan
    • System Architecture
      • Background
      • Concurrency Limitations
      • Complexity in Transaction and Contract Management
    • Core Concepts
      • Deterministic Transaction
        • Guaranteed Transaction
      • Instant Finality
        • Liveness and Safety
        • Probabilistic Finality vs Instant Finality
      • Account Abstraction
        • Concept of Account Abstraction
        • Technical Implementation
        • Security and Operational Implications
      • Intent Based Transactions
        • The Infrastructure and Process of IBTs
        • Declarative Constraints in IBTs
      • Layer 2
        • Types of Layer 2 Solutions
      • Sequencers
        • Core Functions of Sequencers
        • Role in Layer 2 Rollups
        • Challenges
    • System Components
      • Understanding the System Components
      • Optim-Account (Intents to enable tx chain)
        • User Interaction and Intent Submission
        • Intent Structuring and Authentication
        • Smart Contract Functionalities and Operational Parameters
        • The Necessity of an Account-Based Framework
        • Account Abstraction and Its Role in Leviathan
      • Leviathan Sequencer System (tx chain building)
        • The Role of the Leviathan Sequencer System in Conjunction with The Optim Account
        • Sequencing and Ordering of Transactions
        • The Role of Time in the System
        • The Pragmatic Leviathan: Dealing with Potential Changes
      • The Role of OADA in the Leviathan System
        • Operational Simplification of Staking Mechanisms via OADA Integration
        • Facilitating Time Dilation and Composability
    • Processes
      • Entering Leviathan
      • Transaction Execution
      • Leaving Leviathan
    • High Level Overview
      • System Design
        • Account Abstraction Functionality
        • Guaranteed Transactions
        • Instant Finality
        • Unbreakable Transaction Chaining
        • Layer 2 Execution Environment
        • Future Sequencer Network
      • System Context
        • Limitations of current transactions chaining paradigm
        • Limitations of current inter dApp composability issues
        • Explanation of basic design and non-custodial asset inputs
        • Intent Based Transactions
        • Account Base vs eUTxO model app architecture
      • Theoretical Applications
  • GOVERNANCE
    • Governance Overview
      • Proposal Temp Check
      • Governance Proposal
        • On/Off Chain Mechanics
      • ODAO
    • Tokenomics
      • Categories
      • Vesting
    • Optim DAO Wallets
    • Protocol Profits
  • GUIDES
    • Transaction Chaining
      • Background
      • Overview
      • Pool Transaction Chaining
    • OPTIMiz Conversion
  • ODAO Stack
    • Introduction
    • Design Principles
    • Why Optim DAO Stack?
      • Current Limitations
      • ODAO Solutions
    • Key Features
      • Snapshot Voting
      • Treasury Management
      • Proposal Execution
    • System Architecture
      • Modular Framework
      • On-Chain Logic
      • Off-Chain Operations
      • User Interfaces
    • Core Modules
      • Snapshot Voting Module
      • Treasury Management Module
      • Proposal Execution Module
    • Future Roadmap
      • Potential Future Enhancements
      • Long Term Vision
  • OADA UI
    • Setup
      • Installation
      • Development Workflow
      • Troubleshooting
      • Development Tips
      • Open Source Contributions
      • FAQ
    • Key Functionalities
      • Wallet Integration
      • Dashboard
      • Transaction Management
        • UTxO Management
        • Transaction Creation and Conversion
        • Transaction Monitoring
      • Real-time Updates
        • Portfolio Value Tracking
        • Transaction Status Monitoring
    • OADA Smart Contract API
      • Minting OADA
      • Staking OADA
      • Unstaking sOADA
      • Epoch Stake Auction
        • Bid Calculation Functions
        • Auction Actions
        • Bid Form Component
        • Auction Dashboard
    • Tutorials
      • Environment Setup and Installation
      • Understanding the Project Structure
      • Basic Configuration and Customization
      • Working with Components
      • State Management and Data Flow
      • Wallet Integration and State Management
      • Smart Contract Integration
      • Advanced UI Customization
      • Testing and Quality Assurance
Powered by GitBook
On this page
  • Common Terms and Constants
  • NFT Minting Policy
  • Bond Token
  • Bond Writer Validator
  • Open Validator
  • Closed Validator
  1. LIQUIDITY BONDS
  2. Bond Architecture

Scripts Technical

PreviousHigh Level WorkflowNextTransaction Flow

Last updated 10 months ago

When scripts depend on minting policies we use CurrencySymbol rather than ValidatorHash. otmAddr is Optim's address and used to receive fees.

Common Terms and Constants

A month refers to a period of 30 days exactly (6 epochs). Epoch Boundary refers to the exact LAST slot in the epoch 327. Epoch refers to the length of an epoch in slots (seconds) i.e. 432000. Stake Key may be arbitrary when not explicitly stated to be enterprise or locking.stake.

NFT Minting Policy

This universal minting policy is used for two kinds of NFTs:

  • Uniqueness NFT: This is an NFT at the token level and uniquely corresponds with the Bond Tokens and Ownership NFT assets sharing the same token name. Identifies a particular bond.

  • Ownership NFT: This token represents the borrower's rights and allows re-delegating the locked funds. As a native asset, this allows the borrower's position to be resold on a secondary market.

Bond Token

Also known as BT. Minting policy for the primary tokens of the product. Minted upon entering Open state and burned after entering Closed state. Invariant: Backed by at least 100 ADA redeemable at worst 2 years after receiving the token.

Bond Writer Validator

Validator for posting bond offer to be presented to potential lenders.The parameters for the bond's lifetime are specified in the datum. Should ensure that the Open state is entered with the correct parameters and guard minting of BT. This state can be canceled by the holder of the corresponding Ownership NFT, or (as a security measure to prevent funds getting stuck) by the owner of the stake key specified in the datum.

Open Validator

State representing active loans. In this state the position is maintained by adding margin as specified in the datum. If the position falls below its maintenance margin, or if it has run its course, it can be closed by any sender. The value in this state is delegated to the borrower's pool of choice, and the credential can be changed by the holder of the corresponding Ownership NFT.

Closed Validator

State representing completed loans. In this state holders of BT can redeem each token for the 100 ADA face value, plus a proportional cut of the interest paid in rewards. The staking credential in this state is provided by the original lender.